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A general method based on the use of Lagrangian equations for determining 
hydrodynamic interaction between bodies in a fluid is presented. Formulas for 
the kinetic energy and the Lagrangian function are reduced to a form which per- 
mits an effective application of the method of small parameter. Additive com- 
ponents of kinetic energy and of the Lagrangian function, which determine the 

hydrodynamic interaction between two bodies, one of which is small in compa- 
rison with the distance between the two, are calculated. The method is used for 
considering the case of several bodies. The results are expressed in terms of co- 

efficients of apparent mass of individual bodies in a boundless fluid. General 
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formulas are derived for forces and moments acting on a body in a nonuniform 
stream. 

The feasibility of expressing hydrodynamic reactions on a body in a nonuni- 

form stream in terms of apparent mass coefficients has not been, so far, estab- 
lished. Solutions were sought for bodies of particular form, while in the three- 
dimensional case no solution was found even for a small sphere. 

The description of a solid body in a perfect incompressible fluid by Lagrangian 
equations was first given in Cl]. The forces and moments acting on such body 
moving in a boundless fluid were determined in @I. The most rigbrous proof of 
equations of motion of a solid body in a boundless fluid appears in [3]. The prob- 

lem of a body in an arbitrary stream of fluid was apparently first formulated by 
Zhukovskii [4]. The motion of a body in a uniform accelerated stream was 

investigated in [5]. Formulas for forces and moments acting on a stationary 
elliptical cylinder in an arbitrary plane potential flow were derived in [6], while 

in [7] the force acting on an expanding circular cylinder moving in an arbitrary 

stream with constant vorticity was calculated. As survey of publications on the 
hydrodynamic interaction between bodies in a fluid appears in [S]. 

1. Energy of hydrodynamic interaction. Expressions defining forces 
exerted by the fluid on a body and, consequently, the equations of motion of the body in 
a fluid can be derived by solving the problem of Laplacian equation with subsequent 

application of the Cauchy-Lagrange integral. However such calculations in the case of 
a nonuniform stream, where the presence of a velocity gradient is important, is extremely 
cumbersome even for a sphere. To avoid solving in each particular case the Lapalcian 
equation an attempt can be made to use the Lagrangian equation. As shown in [9 - 111, 
the motion of solid bodies in a perfect incompressible fluid is defined by Lagrangian 
equations. With the use of the variational principle [12] we can prove that Iagrangian 
equations are valid in the general case of motion of a solid body in a perfect incompres- 
sible fluid, when the potential flow in which the body is immersed is generated by some 
arbitrary motion of surfaces subject to kinematic or dynamic conditions. 

Let a body whose surface is s, move in a potential flow of a perfect incompressible 

fluid which is at rest at infinity. The nonuniform stream is induced by the motion of 
surface S, (possibly consisting of several interconnected parts) along which kinematic 
(fixed law of motion) and dynamic (free surface) conditions are specified. To formulate 
the Lagrangian equations with respect to coordinates qlj of surface S, it is necessary to 
separate the components of the fluid kinetic energy, which depend on these coordinates 
and velocities qij’ associated with these coordinates. The complete definition of the 

motion requires, generally speaking, the indication of the set of coordinates qzj speci- 
fying surface S, and velocities qzj’. Let Q’,. denote the velocity potential of motion 
S, at velocities Qaj’ in the boundless fluid (cr = 1, a), and @ the general flow po- 
tential in the presence of the two surfaces. In this notation there exists a unique repre- 
sentation of @ in the form of the sum 

(1.1) 

Outside S, (a = I, 2) function @‘a’ 1s harmonic and tends to vanish at infinity, since 
by virtue of the fundamental identity of the theory of harmonic functions we have 
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(1.2) 

which proves the validity of formula (1.1). Here and subsequently differentiation is 
carried out along the external normal to the fluid volume. Formula (1 2) is useful for 
estimating the potential at considerable distances from s,, At surface S, potential 0 
satisfies the following condition : 

d@ I Bn = SD, / an (1.3) 
The kinetic energy of fluid is 

T = T, + T,, $ T, = $- 
s 

@gdS (1.4) 
SlUSl 

where T, is the fluid energy when one surface S, is in motion in a boundless fluid, and 

T,, is the energy of hydrodynamic interaction 

Tu,$\O$$dS 

S, 
(1.5) 

The determination of the hydrodynamic interaction T,, is equivalent to the deter- 

mination of kinetic energy variation AT = T, + T,,, when the first body is immersed 
in the stream induced by the second body, since Tl is known from the problem of motion 

of a body in a boundless fluid. The variation of kinetic energy may be considered in a 
more general case in which the potentiality condition is imposed on the unperturbed 

stream vs, while the shipe and volume of the body may vary. 

Theorem. Let the potential stream va = V @s be specified in the region bounded 

by S, with @s --t 0 at infinity. By immersing in this stream a body with an arbitra- 

rily moving boundary S, , with constant normal velocity vn at surface S, , a velocity 

field v is generated which is, generally speaking, a vertical field. In this case the kine- 
tic energy variation AT is defined by formula 

A? -=;l(v-vp)2dr+ f!$+T)dz--$ S@,dl 
P (I. 6) 

n V 1' 

where 52 is the region occupied by the fluid in the presence of the body, and v is the 
volume of the body bounded by surface S1. 

Proof. By subtracting the kinetic energy of the stream in region 9 U v prior to 

the immersion of the body from the kinetic energy of the perturbed stream, we can 
obtain 

+ AT = s (v - vJ2dz + 2 s (v - v2) v,dz - 1 v22dr 
R n V 

Taking into account the solenoidal property of v and that of potentiality of V2, and 
using Ostrogradskii’s theorem, we reduce the second integral to the integral of (v, - 

2)2n) m2 taken over the surface S, of the body, because the integral over S, vanishes 
owing to the theorem condition that u,, = 2)2n at S,. The integral of -a2,,m2 over 
surface S, is equal to the integral of vs2 taken over volume V . Finally, we obtain 

2 j (v - ~2) v,dz - \ vz2dr = 2 s v,@dS + s v22dz 
n + 5.1 V 

The substitution of the last formula into the preceding one with allowance for the kine- 
matic identity 
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for the total derivative of the integral over the moving volume, leads to formula (1.6). 
It should be noted that this proof is based on the assumption that the velocity v dimi- 

nishes fairly rapidly at infinity, an assumption which is necessary for the existence of 
kinetic energy. 

For a given unperturbed stream the last two integrals in (1.6) are functions of coordi- 
nates and velocities of the body. For a fairly small body the first integral in (1.6) is 

approximately equal to the kinetic energy of the fluid in relative motion. 
If the velocity field v is potential and the potential of mass forces is denoted by u, 

we can introduce the Lagrangian function 

L=AT-p ‘Udr 
$ 

which depends on generalized coordinates and velocities of surface S, and is related to 

generalized forces exerted on the fluid by surface S, by Lagrangian equations. 
Expressing the integrand of the second integral in (1.6) in terms pf pressure pz of the 

unperturbed stream with the use of the Cauchy-Lagarange integral, and discarding the 

total derivative, which is unessential for the Lagrangian function, we can write for the 
Lagrangian function related to the motion of 8, the following exact expression: 

L = + {(v - v,)2dr - Sp,dr 
n V 

(1.7) 

2. The CABS of A rolid body, Let a solid body be bounded by surface s,. 
The velocity field potential can be then represented in the form [9]: 

@&I’, 0, x) = U&a, ui = G-9 ui,, = @i 
(X=1,2,..., 6; i = 1, 2, 3) 

(2.1) 

Here and subsequently xi are Cartesian coordinates and oi are components of the body 
angular, velocity. Recurrent subscripts denote summation. Functions cpcr are harmonic 

which decrease toward infinity and satisfy on S, the following boundary conditions : 

a’pi 
ara = ni, acP if3 an = Ei&jnti9 Axj = xj - qj (2.2) 

where ei3,, is the Levi-Civita tensor. 

We represent the kinetic energy T, in terms of the fellowing quadratic form: 

T, (q’, 0) = $- hzpuaup, b= sIpayjy a’pp dS 

(% P = 1, 2, . . ., :; 

(2.3) 

The apparent masses (2.3) for ~1, p >3 are expressed in terms of the antisymmetric 

part of tensor n 
(2.4) 
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l,et D be the maximum distance between points of surface S,. . At the surface of the 

body ‘Pi - B and (Pi+3 - D2, hence from (2.3) we have 

hij - D3, Aij+s - D4, I’ijk - D4, hi+3j+3 w D5 

To calculate the interaction energy by (1.6) or the lagrangian function (1.7) it is 

necessary to determine the integral 

Denoting the distance between S, and S, by r. , for D < ro, we have 

0 - Q.z = @I (U, 0, X) - 2 (9) Cpij + 0 (D3) 

(2.5) 

(2.6) 

(u = q’ - v) 

The subscript 2 at the unperturbed stream velocity is here and subsequently omitted. 
Functions Cpij are harmonic outside S, and satisfy at S, the condition 

acpij / dn = Axjni (2.7) 

In fact, it follows from (1.2) that for D < r. at s, the sum @I + @‘I’ is of the order 
of D3. Hence from (1.1) and (1.3) we obtain that at S, 

a@~‘/ i3n = 0 (D3) 

Consequently, (&’ = 0 (03) everywhere, and from (1.1) we have 

@ - @, = $ + cPl’.-+ 0 (D3) 

At S, the boundary condition (1.3) yields 

ami’/ an = -a@,, I an + 0 (D3) 

(2.8) 

Substituting into this equation the first terms of expansion of $ into a Taylor series at 
point x = g, we obtain for @I an expression of the form 

@,1’ = - ViCpi - ~ijaVi/ axj + 0 (D3) (2.9) 

where functions Cpi and qij, which are harmonic outside S, , satisfy at S, conditions 

(2.2) and (2.7). Taking into account (2.1) and substituting (2.9) into (2.8), we obtain 

(2.6), 
The integral (2. E$ is determined with the use of (2.6) and (2.1) - (2.4) in terms of 

functions T, and r which are found by solving the problem of motion of a body in a 

boundless fluid, and the contribution of potentials Cpij is calculated by Green’s formula, 
To within small magnitudes of the order 05 the Lagrangian function (1.7) assumes 

the form &lj 

L = T, (UT 0) - p (qy t) V - f)I‘ij,Ui a;c (9, t) 
k 

(u _ q’ - v(q, t)) (2.10) 

where point q is the center of volume (center of gravity, if the body is homogeneous), 

v (‘1, ~1 and P (s, t> are, respectively, the velocity and the pressure of the stream in 

the absence of a body, and v, is the volume of the body. The first term in (2.10) cor- 
responds to the kinetic energy of a boundless fluid in which the body moves at the rela- 

tive velocity u. 
For a known Lagrangian function (2.10) the problem of determination of hydrodyna- 
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mic reactions reduces to differentiation. It is important to bear in mind that to obtain 
the same accuracy of determination of forces and moments by the Lagrangian equations 

as by the Cauchy-Lagrange integral it is sufficient to take in the expansion of the unper- 
turbed stream potential @a terms whose magnitude is by a unit lower. The use of La- 

grangian equations, thus simplifies the solution of the problem of hydrodynamic reactions 
on the body in a nonuniform stream. 

For Tl + T1, the energy of the hydrodynamic interaction between two bodies is 

readily calculated by formula (1.6). Using the value of integral (2.5) determined to 
within D5 and omitting subscript 2 at the unperturbed velocity, from (1.6) we obtain 

where 6ij is the Kronecker delta. For fairly great distances between bodies we can 

neglect in (2.11) the terms which are quadratic with respect to the stream velocity v 

induced by the second body. If the distance between any two bodies is considerable in 

comparison with their dimensions, the hydrodynamic interaction energy in a system of 

N bodies can be determined by the energies TorP (a, p = 1,2,.. ., N and a =#= b) 
of hydrodynamic interaction between two bodies, Which are calculated with the disregard 

of terms which are quadratic with respect to v. The total kinetic energy of fluid is 

equal to the sum of kinetic energies T, of motion of the ath body in a boundless fluid 
and of the energy of paired interactions Tap 

T= ST.++5 $Tap (Tm = 0) (2.12) 
a=1 a=1p=1 

The validity of (2.12) can be proved by induction, by adding to the system of N - 1 
bodies one more body and calculating the energy of interaction between the latter and 
the ( N - 1 )-St body on the assumption that in the absence of the a = N body the 
velocity at point qN is approximately equal to the sum of velocities induced by the 
motion of individual bodies in the absence of all other bodies, an assumption which is 

valid for fairly great distances between bodies. 
The case of a nonrigid body capable of changing its volume and shape is similarly 

analyzed with the use of general formulas (1.6) and (1.7). The principal terms T, - 
pv which in formula (2.10) are asymptotic with respect to D remain valid for Lagran- 

gian functions, also, in the general case. 

3. Force8 and moment8 acting on the tolid body. The expression 
for the Lagrangian function contains components of tensors I? and h, which depentl on 
the body position in space. It is convenient to introduce, in addition to the absolute sys- 

tern of coordinates 9, the system of coordinates zi attached to the body. The latter is, 
generally speaking, not inertial. Let ZJ~ denote an inertial system which at the instant t 
coincides with .Q. If the change from the &-axes to the zi-axes is determined by 

zi = f?ij (yj - hj) (3.1) 

then hj = 0, and eij = 6ij is valid at instant t . Force F exerted by the fluid on 
the body is determined by the Lagrangian equation 

_ F = _i._ aL aL 
dlx-x 

(3.2) 
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The determination of the derivative 8L / 8q by (2.10) is elementary, and (3.2) assu- 
mes the form (*) 

-F+ +VVp+(QV)v+A (3.3) 

(Qi = dL /a%‘, Al = PFljrrVi (%V,%)) 

where l’,jk are components of tensor I’ along the z i-axes attached to the body. In the 

system of coordinates attached to the body the component of the generalized momentum 

vector Q is defined by formula 

(3.4) 

where the components of tensors 1, I’ , and of vector o.r are defined in the zi-system, 
and of vectors u, v and V in the yi -system. Formula (3.4) is convenient because ten- 
sors X and r are defined in the zi -system, while vectors u and v, and their deriva- 

tives are determined in the inertial system of j/i -coordinates. 
Formula (3.3) contains in the inertial system yi the derivative of momentum with 

respect to time, which can be determined with the use of 

dQ I dt = d’Q / dt + o x Q 

Here and subsequently a prime denotes a derivative with respect to time in the pi -sys- 
tern. This derivative is readily determined by differentiating (3.4) and taking into ac- 
count that tensors x and I’ are independent of time and that at the instant when the 

yi and z, axes coincide d 

dt eij = eij,@k, r?ij = 6,j (3.5) 

The first two terms in (3.4) correspond to the momentum in the case of motion in a 
uniform stream. The last term takes into account the effect of the velocity gradient of 
the unperturbed stream and is of the order D 4. The first term in (3.3) coincides with 

the expression for the force in the case of a boundless fluid at rest at infinity [9]. When 

the second term in (3.3) is taken into account, this formula defines an accelerated uni- 

form stream [5]. The last two terms take into account the stream nonuniformity and, 

generally speaking, 1 (Q G) v 1 - D3 and 1 A 1 - D*. 
The equation of moments can be derived by introducing Euler’s angles 8, cp, and 9 

as generalized coordinates supplementing the three qi -coordinates. The cosines of 
angles eij in (3.1) are then functions of Euler’s angles. Euler’s angles are introduced 
in such a way that the moving trihedral is brought from the position in which its axes are 
collinear with ?J~ into that in which these coincide with Zi by successive turns about its 

axes: by angle 11 about axis i = 3, by angle 0 about axis i = 1 , and by angle pl 
about axis i = 3 [133. 

The moment of forces exerted by the fluid on the body with respect to the za-axis 
by virtue of Lagrangian equations is 

(3.6) 

*) A similar expression for the force obtained. b discardin 
in particular, o the term denoted by A was in 

J. H terms of the order ?” and. 
lcated by aklmov, after the lomt dls- 

cussion of formula (3.2) with allowance for (2.10). 
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From the definition of Euler’s angles for the derivatives of coefficients of transformation 

(3.1) with respect to angle cp we obtain 

(3.7) 

Taking into consideration the dependence of angular velocity projection on the zi-axis 
attached to the body on angle p, and on cp’, we obtain 

When Euler’s angles are zero, systems yi and zi coincide and a small variation of 
these does not determine all close positions of the te~ahedrons, since the angle between 
the z,-axis and the plane ya = 0 and that between the zs-axis and the plane y1 = 0 
are magnitudes of the second order of smallness. For Euler‘s angles of the first order of 
smallness, solid body turns about an axis which does not lie in the plane ys = 0 are 
indeterminate. Owing to this, 0, tp and $ at this point cannot be taken as generalized 
coordinates. It is then necessary to wtite the Lagrangian equation at the point 8, cp,, and 

4 # 0 and to pass in the final expression for the moment of force IV, to the limit 8, 
rp, and 4 = 0. With the use of this procedure from (3.5) - (3.8) we obtain 

(3.9) 

where vi. and Ui are vector components along the &-axes whose direction in space is 
fixed, and wi are angular velocity components along the si-axes attached to the body. 
Expressions for W, and IV, are obtained from (3.9) by a cyclic permutation of sub- 
scripts 1, 2, 3. Finally, for the moment W exerted by the fuid on the body we can 
write 

- +oxK+uxQ+B 

@i = P*l (&jk + &ij) FikmVmUj) 

(3.10) 

The form of (3.10) differs from that for the moment in the case of a boundless fluid at 

rest at infinity 191 only by the presence of the additional term 1 B I- D4 and of term 

of the same order in Q in (3.4). 

The principal terms in (3.3). (3.4) and (3.9) - (3.10) are of the order D8. The der- 
ived formulas are valid to within small magnitudes of order 05, if coordinates ii are 
those of the center of volume. The moment at any other point is determined by adding 
to the obtained value the moment of force F about that point. 

4. The symmetric body. let a body be symmetric with respect to three mu- 
tually perpendicular planes. Taking the latter as the coordinate planes of system zir 
from (2.1) - (2.4) and (2.5). we obtain 

ri‘$j = 0; hap=0 for a#3 (4.1) 

Using (3.3) and (3.4) and allowing for (4, l), for the first component of force F, we can 
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write (*) 

FI 
P 

-t h - A,*) (q2’ - u2) x 

i 
---0 (42) 

If Ai1 = &a = h,, = h, which, for example, is valid for a sphere and a cube, formula 

(4.2) reduces to a particularly simple form. The motion of a solid body (of such form) 
in a nonuniform stream is the same as that of a material particle in a force field whose 

force function is phU - (1L + v) p, and, if the non~iform stream is steady, the equa- 
tions of motion of the body in it are integrable. If the body is at rest, then, as implied 

by (4.21, 
F1 = f&i (G + v,li) + v1[$- (%,v,2 + &$22 + h33u32) - VP] 

In the case of a symmetric body formula (3.9) for the moment is, also, considerably 

simplified bytaking into account (4.1) 

wa 
- = - b13$ + (h- ~,,)w, + (&I - u%o2 
iD 

(4.3) 

Similar expressions are valid for I&‘, and W1. 
An important conclusion follows from formula (4.3), viz., that the stream nonunifor- 

mity does not affect the rotation of the body (with an accuracy to.within Ds), provided 
the body has three mutually orthogonal planes of ~rnrne~, 

It will be readily seen that in the case of a body moving in a steady uniform stream, 
formulas (4.2) and (4.3) agree with the known formulas for forces and moments acting 
on a symmetric body moving in a perfect incompressible fluid [ 143, 

The derived theory of hydrodynamic interaction between bodies is, also, valid in the 

plane case, if circulation around these is absent. The Lagrangian function (2.10) and 
the ensuing gerreral equations for forces and moments remain valid but are considerably 
simplified, owing to the reduction of the number of generalized coordinates from six to 

three. In the particular case of an elliptic or circular cylinder the derived formulas are 

in agreement with the results presented in [6, 71. 
The authors thank L. I. Sedov for his interest in this work and valuable remarks and 

G. Iu. Stepanov for discussing this paper. 
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The steady flow of a viscous incompressible fluid past a body of finite dimen- 
sions is considered. It is assumed that the velocity vector u satisfies condition 

II - Lb= = 0 (R”O) 

where u, is the velocity vector of the oncoming stream, R is the distance 
from a fixed point of the body, and a > l/s.. Terms defining the asymptotic beha- 
vior of velocity of the order of 0 (R-l) and 0 (R-*‘*) are determined and an esti- 

mate of the residual term is given. The derived asymptotic formula for the velo- 
city vortex shows that outside the wake the vortex decreases according to an ex- 

ponential law. 

1, Lemmrr, 1.1. Let us consider the steady flow of a viscous incompressible 
fluid past a body such that B c R3 . We denote the dimensionless velocity vector and 
pressure by u and p ,respectively, Let S = dB be a surface which satisfies the Liapunov 
conditions. We locate the coordinate origin inside B and select the direction of coor- 
dinate axes and the scale so that the oncoming stream velocity u_, is (1, 0, 0) and the 
diameter B is unity. 

The steady motion of a viscous fluid is defined by the system of equations 

u*vu i_ grad p = Au i 2h, div u = 0 (1.1) 


